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Abstract. Two different methodsfor retrieving Upper TroposphericHumidities

(UTH) from the TOVS (TIROS Operational Vertical Sounder) instruments aboard

NOAA polar orbiting satellites are presentedand compared. The first one, from

the Environmental TechnologyLaboratory, computed by J. Bates and D. Jackson

(hereafter BJ method), estimatesUTH from a simplified radiative transfer analysisof

the upper tropospheric infrared water vapor channelat wavelengthmeasuredby HIRS

(6.3gm). The secondone results from a neural network analysisof the TOVS (HIRS

and MSU) data developedat the Laboratoire de MeteorologieDynamique (hereafterthe

3I (Improved Initialization Inversion)method). Although the two methods give very

similar retrievals in t,emperateregions(30-60°Nand S), an absolutebias up to 16c7c,

appearsin the convectivezoneof the tropics. The two datasetshavealsobeencompared

with UTH retrievals from infrared radiancemeasurementsin the 6.3 m channel from

the geostationary satellite METEOSAT (hereafter MET method). The METEOSAT

retrievals are systematically drier than the TOVS-based results by an absolute bias

between 5 and 25_,. Despite the biases, the spatial and temporal correlations are

very good. The purpose of this study is to explain the deviations observed between

the three datasets. The sensitivity of UTH to air temperature and humidity profiles

is analysed as are the clouds effects. Overall, the comparison of the three retrievals

gives an assessement of the current uncertainties in water vapor amounts in the upper

troposphere as determined from NOAA and METEOSAT satellites.



1. Introduction

One of the major controversies about the water vapor atmospheric distribution

concerns its amount in the upper troposphere. Outgoing Long wave Radiation (OLR)

fluxes are very sensitive to lhis quantity [Spencer and BraswelI, 1997], especially in a

dry atmosphere, so upper tropospheric humidity variations can have important effects

on climate changes.

Unfortunate]y, water vapor is poorly' measured particularly in the upper troposphere

where radiosonde measuremenls are unreliable [Elliott and Gaffen, 1991; Soden and

Lanzante, 1996]. Therefore, water vapor measured remotely from satellites is a way to

add important information, especially' since satellites provide the only global analysis

of humidity fields possible. Recen_ studies have described several datasets of clear-sky

radiances from the moisture-sensitive 6.7-pm channel onboard geoslationary satellites

[.5"chmetz and T, zrl)einen, 1988; Turpeinen and Schmetz, 1989; Soden and Bretherton,

1993] and from the moisture sensitive channels onboard polar orbiting satellites [Bates et

al., 1996; Stephens et al., 1996; Chaboureau et al., 1998]. Geostationary measurements

provide information regarding the vertically averaged water vapor content of the upper

troposphere (roughly 300-600rob). Polar orbiter measurements describe the vertical

distribution of the tropospheric moisture from the surface to about 100hPa.

Several methods exist to retrieve water vapor amount in the upper troposphere from

satellite infrared radiances. The different methods are usually dependent on ancillary

data such as radiosondes or European Center for Medium-range Weather Forecasts



(ECM\VF) forecastprofiles. A comparisonbetweendifferent satellite retrievals is one

way of validating the remote sensingobservations. In this study, we comparethree

datasetsof Upper TroposphericHumidity (UTH) retrievals from satellites (described

in section 2) in order to assess current, uncertainties. Since we use the METEOSAT

observations, the domain of study is restricted to the METEOSAT view of the Earth,

centered at 0V, ,ON, with a 55 ° latitude-longitude radius. A physical retrieval method

based on a neural network approach is compared to two analytical methods based

upon a simplified radiative transfer theory to relate brigthness temperature to relative

humidity. Retrievals fi'om geostationary and from polar orbiting satellites are also

compared. Perfect agreement is not expected as algorithms, spectral channels and the

upper tropospheric layers observed are slightly different.. The results of the comparisons

are described in the third section. In the last section, we try to explain the systematic

differences.

2. Data description

The quantity UTH (a simple interpretation of brightness temperature, Tb) is defined

as the weighting-function-averaged relative humidity computed over a deep layer of the

upper troposphere between 200 and 600hPa for both TIROS-N Operational Vertical

Sounder (TOVS) channel 12 ( .3am wavelength) and the METEOSAT water vapor

channel, (6.71,m wavelength). Such channels are sensitive both to air temperature and

moisture in the upper troposphere, which explains the interpretation of Tb in term

of relative humidity, which is a function of temperature and specific humidity. The



following study is donefor four months in 1989(January,April, July and October) in

the METEOSAT domain. The METEOSAT imageis subdivided into segmentsof 32

x 32 IR pixels, correspondingto about 160x160kmat the subsatellite point and about

200x200km as a mean value. The other datasets used in this study are averaged on

tha_ grid. Twice daily retrieva!s are used l,o compute UTH from METEOSAT (11 AM

and PM), whereas four retri,.vals, two from NOAA-10 (7.30 AM and PM) and two from

NOAA-11 (2.30 AM and PM), are mixed to compute UTH in both TO\:S datasets. The

temporal resolutions examined are 5-days and monthly averages.

In the following, the three UTH datasets are defined and the relative humidity in

percent is calculated with respect to liquid water. Percent values will also represent

absolute differences of relative humidity or relative differences of relative humidity as

precised in the text.

2.1. UTH from TOVS/HIRS: A simple Tb interpretation

This first UTH dataset is from the Environmental Technology Laboratory and was

computed by J. Bates and D. Jackson (BJ-UTH). The computation uses TOVS/HIRS

(TIROS-N Operational Vertical Sounder/ High resolution Infrared Radiation Sounder)

radiances from channels 12 (6.7/_m), 4 (14.2/_m) and 6 (13.7/xm). Channels 4 and

6 are used for operational temperature sounding (respectively T4 and T6), whereas

channel 12 is sensitive to water vapor and air temperature in upper troposphere. The

radiances are limb corrected and cloud cleared by the operational NESDIS (National

Environmental Satellite Data and Information Service) TOVS processing package



[14"erbou,e:lzki,1981;Kidwell, 1991]. The UTH retrieval method is based on the work

by Soden aT_d BrethertoT_ [1993], using forward radiative transfer simulation, with some

changes according t.o Stepher_s et aI. [1996]. The 6.7pro brightness temperature Tb is

interpreted as UTH, which is supposed to be the relative humidity in the 300-500hPa

layer, following the equation:

log( < UTH >)= a + bTb (1)
</3>

where < . > stands for the vertical average of the quantity. < /_ > is a function of

the difference (T6-T4) as shown in Fig.ll of Stephens et al. [1996], except that the factor

cos0, is equal to 1, since angular corrections were applied to the radiance data.

Minor changes, such as using the profile informalion from the climato]ogica] data

base TIGR-3 [ChddiT_ et al., 1985; Chevallier el. al., 1998] instead of TIGR-2, changing

the Malkmus [MaIkmus, 1967] radiative transfer model for the MODTRAN [Berk et

al., 1989] model, and basing weighting function on temperature profiles instead of

atmospheric transmission (in order to allow the weighting function to stay, in the upper

troposphere for most profiles) have been introduced by D. Jackson (1999, personal

communication). An uncertainty of approximately 15-20% (relative error) is estimated

for UTH [Stephens el al., 1996] but. larger uncertainties exist poleward of 45 °. This a

limitation of the method, which has difficulty retrieving UTH when air temperature is

two low.

The BJ-UTH values have been constrained in order to avoid relative humidities
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with respect to ice greater than t00%, which leadsthe UTH valueswith respect to

water (the BJ-UTH product.)smMler than 70%,a thresholdobservedin the data (see

section3.).

2.2. UTH from METEOSAT: A simple Tb interpretation

The radiances come from the water vapor (WV_ channel of METEOSAT, sensitive

to radiation between 5.7 and 7.1-#m. The METEOSAT UTH products (MET-UTH),

provided by EUMETSAT are produced following Schmetz and Turpeinen [1988] method

based on a look-up table derived from radiative transfer calculations for a set of

fixed UTH. The EC.MWF forecast, temperature profiles (from surface to 100hPa) and

ECMWF forecast humidity profiles (from surface to 600hPa) are used in the method as

adequate knowledge of the atmospheric structure. Between 300-600hPa, the humidity

profile is represented by the UTH and above 300hPa humidity decreases linearly to reach

0% at 100hPa. Spectral radiances are calculated with an efficient, radiative transfer

model [5ct_metz, 1986]. These calculations give a two entry-table (UTH and Tb from WV

channel). The absolute error on UTH is estimated at 10-15% [Schmetz and Turpeinen,

1988]. For the 1989 products, UTH was derived only' for areas completly free of clouds

at pressure level below 700hPa.

Since no calibration of the water vapor channel is performed aboard the satellite,

a calibration method is implemented. Temperature and humidity profiles from

radiosondes are used with the radiative transfer model to simulate radiances. The

simulaled radiances are compared to the 6.3pro channel radiances in order to calculate



a calibration coefficient,[Schmetzand Turpein.en, 1988]. The quality of the calibration

coefficient is monitored by following the bias between the UTH (obtained from the

look-up table) and in-situ humidities from radiosondes. MET-UTH products used

in this stud), are from the year 1989. Radiances for January and April come from

METEOSAT-3, while radiances for July and October come from MET--4. The calibration

described above has been applied to the radiances used to calculate the UTH-MET

product of 1989.

Note that a new calibration described in van de Bet 9 et al. [1995] tends to decrease

the radiances by a 8_ relative bias (and so increase UTH by a 20% relative bias) but it

has not been applied yet to the UTH products of 1989.

2.3. UTH from TOVS/HIRS: A neural network approach

UTH is computed from the precipitable water amount in the 300-500hPa layer

retrieved with the Improved Initialization Inversion (3I) method [Ch{din et al., 1985;

Scot! et al., 1999] applied to NOAA-TOVS radiances (hereafter called 31-UTH).

This water vapor dataset is provided by the LMD. As for the BJ-UTH, the level 1B

satellite radiance data are calibrated using coefficients provided by NOAA following

the procedures set forth in []qidwdl, 1991]. The 3I method, dedicated to retrieve

atmospheric, cloud, and surface variables, is a physico-statistical method based on

a pattern recognition approach. After the determination of the temperature profile,

cloud amount along with cloud top pressure and temperature are estimated using the

procedure described by Wahiche et a1.[1986] and improved by Stubenrauch et al. [1996]



and SluDenrauctz el al. [1999]. The HIRS radiances in channels sensitive to water vapor,

HIRS 8(11.1/_m), 10(8.3/ma), 11(7.3/_m) and 12(6.7/_m) and in the window channels

are then corrected for the effects of partial cloud cover, making use of the previously

determined cloud parameters. No cloud correction is attempted if the effective cloud

amount is larger than 60_7_.. Precipitable water amounts (above the surface to !00hPa

and above the 850, 700, 500 and 300hPa levels to 100hPa) are then retrieved using

a non-linear neural network approach [Chaboureau et al., 1998]. The neural network

is trained using tile atmospheric profiles from the TIGR-3 data base as outputs and

the corresponding radiances calculated from the "4A" (Automatized Atmospheric

Absorption Atlas [Scolt e:l aI., 1981]) model as inputs.

To be compared with MET-UTH or BJ-UTH products, the 3I precipitable water

amount in the 300-500hPa layer has to be transformed into UTH. As the transformation

is strongly sensitive t.o air temperature (see section 4.2), the 3I-UTH has been calculated

using daily retrieved precipitable water amount and temperature of the 300-500hPa

layer and then 5-day or monthly averaged. Moreover, the saturated vapor pressure,

dependent also on air temperature, has been calculated with respect to liquid water at

three levels within the 300-500hPa layer to have more accurate UTH results (UTH is

not exactly uniform in the 300-500hPa layer).
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3. Results

3.1. Spatial Variability

Figure 1 presents scatter plots in the tropical portion of the METEOSAT view

that compare the three UTH datasets. It is obvious that 3I-UTH is the more humid

for tropical regions (a slope of 1.3 exists compared with BJ-UTH and of 1.7 compared

with MET-UTH) and MET-UTH is the driest (the slope of BJ-UTH in function of

MET-UTH is 1.23). The larger dynamical range for the 3I-UTH results from a much

better agreement in the dry regions than in humid regions. Despite the biases observed,

the three datasets show similar spatial patterns. Indeed, the spatial correlations are

larger than 0.95 with an absolute standard deviation smaller than 6.5_. Two out of the

four months in Table 1 (January and April) show smaller correlation in the comparison

with METEOSAT (0.92-0.94) and greater absolute standard deviation of about. 5 to 7%.

We cannol confirm that the same method has been applied to MET-3 (January/April)

and MET-4 (July/October).

In temperate regions (30-60°N and S), the correlation are always larger than 0.98

with an absolute standard deviation smaller than 3.5% as shown in Table 2, except

for the comparisons with BJ-UTH where correlation is around 0.95 (in January and

July) with an absolute standard deviation larger than 4.4%. This discrepancy between

BJ-UTH and the two other datasets, also observed on the scatter plots of Figure

2, appears mostly for the highest latitudes in winter (north hemisphere in January

and south hemisphere in July), where BJ-UTH becomes larger than the two other

[Figure 1 ]

[Table lJ

[Table 2
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datasets. The limits of the BJ method to retrieve UTH when air temperatures are low

has been stressed in the description of this method. BJ-UTH and 3I-UTH have the

best agreement, 3]-UTH being a little larger between 30-40 ° (N and S) and BJ-UTH

larger between 40-60 ° (N and S). MET-UTH is always much smaller than both TOVS

retrievals, the slope is between 1.76 and 1.80.

Figure 3, which illustrates the spatial differences between each dataset and the

mean of the three, summarizes the spatial comparison (only July is shown). Each

UTH datase{ is in agreement with the mean to within 7% (absolute difference) in the

dry regions and within 21% (absolute difference) in the more humid regions, UTH-3I

being wetter and MET-UTH drier. The BJ-UTH is in agreement, within 7% (absolute

difference) over the whole region, except in the winter highest latitudes where it is more

humid by up to 20%. A 7_ absolute bias in dry regions and a 21% absolute bias in

humid regions represents a relative bias to the mean of about 30% in both regions.

In conclusion, the three datasets, are very well correlated spatially but systematic

discrepancies exist in the magnitude of the mean variation from humid to dry conditions.

Indeed, the quantitative agreement is still a relative bias to the 3 datasets mean of 30%,

despite the fact that. the accuracy of each dataset has been estimated to be about 10 to

20% (relative error).

The best spatial correlation for the four months is observed between BJ and 3I in

tropical regions and between MET and 3I in midlatitudes. The best. relative humidity

amounI agreement is observed between BJ and MET in tropical regions and between 3I

and BJ in midlatitudes. Since the spatial correlation is rather good, it is worth looking

[Figure 3J
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more carefully at the temporal variability, using monthly and 5-day-mean.

3.2. Temporal Variability

Variations on two time scales are explored. Figure 4 shows the monthly differences

of zonal mean (ever), 5 ° longitude) UTH between summer and winter months and

between autumn and spring months, approximating the annual cycle amplitude in

the 3 datasets. The METEOSAT view is divided into two parts, the west part being

dominated by ocean (Figure 4 left.) and the east part. by land (Figure 4 right). Error

bars represent the zonal mean standard deviation for the 31 dataset (which has the

largest variability). The January-July difference is significant over land, showing the

seasonal movement of the Inter Tropical Convergence Zone (ITCZ) accross the equator.

\Virile on the sea (Figure 4 left), the January-July difference is not significant compared

to the error bars. The ITCZ has less variabilit)' over sea than over land as also shown

by precipitation analyses and water vapor data in Peixoto and Oort [1992].

The April-October difference has a significant positive maximum in the southern

tropical ocean (West part), which is not observed on land, linked to a large relative

humidity and precipitation rate east of Brazil over the southern Atlantic ocean in April.

In general, the zonal mean correlation between the three datasets is good. 3I

presents slightly larger amplitude but not significantly, compared to the error bar. The

annual amplitudes given by the three datasets are similar.

[Figure 4 ]

In the second study, we select four regions of 15 ° latitude by 15 ° longitude on the



13

METEOSAT view as shownon Figure 5. RegionsA and B are in the tropical zone

(15°N-15°S).A is definitely in a subsidenceregion while B has its relative humidity

amount varying with ITCZ movement.The regionsC and D are located northward and

centeredat latitudes 22.5°N (C) and 37.5°N(D). We focus on 5-day-averageanomaly

time seriesplotted in Figure 6. The anomaliesaredefinedas5-day averageminus the

mean for the correspondingmonth. The anomaly calculation eliminates the biases

between the three datasets. In region A, the 5-day average correlation is very good

(Table 3). In region B, 3I-UTH has significantly larger anomalies in April and January

but is still correlaled with the two other datasets (Figure 6). In the northern region D

where the variations are smaller, the correlation is tile worse but. still good (0.6-0.7) as

shown in Table 3. The error bars represent the spatial standard deviation to the mean.

The rms between datasets varies from 5% (absolute deviation) between BJ-UTH and

MET-UTH in dry tropical region A to 23% (absolute deviation) between 3I-UTH and

MET-UTH in humid tropical region B (Table 3). Despite that large bias differences,

the temporal variation of the three datasets are in a.greement within the error bars, in

the four regions. Thus, the anomalies determined from all three datasets appear to be

reliable.

Figure 7 is a space-time Taylor diagram which summarizes the spatial-temporal

agreement between the three datasets. MET-UTH, which has the smallest average

amount, has been chosen as the reference dataset. The circle identified by 1 is the

normalized standard deviation for the reference data.set. The data plotted near that

circle have similar amplitude variation as the reference data, the data closer to the

Figure 5

Figure 61

[Table 31

lFigure 7]
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center have larger amplitude and the closer to the exterior circle have smaller amplitude

variation than tile reference dataset. The angle with respect to two horizontal axis

represents the correlation with the reference da.taset. High correlations are closer to the

X-axis and low correlations closer to the Y-axis. 5-day-average time series for the four

regions are represented as well as for whole METEOSAT view. 3I-UTH has the largest

space-time variance, except in region D where BJ-UTH has slightly greater amplitude.

MET-UTH has the smallest variance, except in the subsidence region A where BJ-UTH

show lower variance. A decrease of the space-time correlation with latitude is observed

(Figure 7). In tropical regions, the correlation is between 0.87-0.94, in region C between

0.77-0.87 and smaller than 0.64 in region D. A global correlation of about 0.8 is found

for the whole METEOSAT view.

4. Can the bias between the three datasets be explained?

According to the results of section 3, a disagreement is observed on the relative

humidity amount and on the time-space variance. In the present section, we try to

explain the cause of these discrepancies.

4.1. Weighting function

3I-UTH provides values larger than the two other datasets in the convective zones,

bul similar in subsidence zones. 31-UTH values are for the layer 300-500hPa whatever

the region observed and its conditions, whereas the precise layer represented by the two

other methods depends on the water vapor weighting function, which depends on the
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water vapor amount and vertical profile. The maximum of the weighting function shifts

from about 300hPafor a wet tropical profile to about 500hPafor a dry tropical profile

(Figure 8). The maximum of the weightingfunction also dependson the view angleof

the satellite. In humid cases,the BJ and MET methodsmeasureUTH in a layer slightly

above300-500hPa and lower in dry cases. The relative humidity amount measures by

t ilese two methods is different than by the 31 method, depending on the profile. The

effect of the shifting weighting function is to reduce the magnitude of the difference of

UTH between wetter and drier profiles, which explains the larger dynamical range of

3]-UTH. The so-called UTH is not exactly the relative humidity of the 300-500hPa layer

measured by the 37 method as it depends on the shift of the weighting function peak.

Using the 4A radiative transfer model, we calculated the brightness temperatures

corresponding to all the TIGR-3 profiles for the four following water vapor channels:

channel 12 (centered in 6.7/Jm) for HIRS on NOAA-10 and NOAA-11 and the water

vapor channel (centered in 6.3/1m) for MET-3 and MET-4. Two examples are plotted

on Figure 8, one for a dry profile and one for an humid profile. Although the instrument

spectral response function shapes are very different, the weighting functions plotted on

Figure 8 are nearly the same, but the same water vapor amounts correspond to different

brightness temperatures. The bias between brightness temperatures from MET-3 and

MET-4 is about 3°K. The absolute difference between METEOSAT and NOAA-TOVS

brightness temperature is about 1.5°K. These brightness temperature discrepancies are

observed for all the TIGR-3 profiles. To obtain UTH, a calibration treatment, is applied

on radiances at the EUMETSAT european operational center and the UTH algorithm

IFigure 81
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is adjusted lo each satellite to compensate for the brightness temperature discrepancies.

Thus, UTH from MET-3 and MET-4 in the present study are not so different.

4.2. Air temperature sensitivity of the transformation from precipitable

water amount to relative humidity

To illustr ,te the sensitivity of UTH to air temperature, we made three experiments

on the transformation of the 3I precipitable water amount into relative humidity.

In the first experiment, the 3I precipitable water amount is transformed into UTH

using 3I retrieved air temperature (UTHt) and this value +1°I/ (UTHt+I). The I°K

difference, which corresponds to a 0..5°_ relative error in air temperature, introduces

more than 10_ relative error in UTH (not shown). This result is in agreement with

Peixolo and Oort [1996] who shows that 1_ variation on air temperature can induce

more than 20_ relative error in UTH.

The sensitivity of the transformation to air temperature errors is emphasized in a

second experiment, which consists in comparing two 31-UTH products: the first product

(UTHd) is transformed from daily precipitable water amount and daily air temperature,

then averaged over the month. The second product (UTH_) is transformed using the

monthly mean values of precipitable water amount and air temperature. Table 4 shows

the difference between these two products. UTH,_ is systematically larger than UTHd

by an absolute bias of 4_. due to the transformation sensitivity to air temperature. This

effect results from the fact that the monthly average air temperature is less variable

by about 0.5_, compared t.o daily air temperature and in this way produces the 4%

[Table 4]
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absolute difference on UTH.

The last sensitivity test to air temperature is done by, using two different saturated

vapor pressures. Air temperature averaged over the 300-500hPa layer is used to

calculate the first saturated vapor pressure (ewa). Air temperatures derived at three

different levels (300, 400 and 500hPa) give three saturated vapor pressures, which are

then averaged over the wilole layer (ew3). The UTH datasel calculated with eu,3 is

systematically drier than the UTH dataset calculated with ewl. The largest absolute

bias, between 12 and 20%, is observed in the regions poleward of 40 ° , where the

t.emperature is the coldest, and UTH more sensitive to temperature variations. In the

tropical band between 30°N and 30°S, the absolute bias is smaller than 6%, even smaller

than 3% in the driest regions. The variability, of temperature in the tropical band is

relatively small. In January and July, a bias between 3 and 6% is obtained in the most

humid regions.

The tests applied to 3I-UTH show that a 1_, relative error of air temperature

can induce more than 10c_ relative error of UTH. Likewise, a small variation of air

temperature within the 300-500hPa layer can induce significant change in saturated

vapor pressure and so in the UTH retrieval. The third test stresses the sensitivity in

very low temperatures cases as the largest absolute biases are observed at high latitudes.

4.3. Cloudy Regions and Calibration in MET-UTH algorithm.

As shown in Gaffen and Elliott [1993], climatological column water vapor content

of lower troposphere (surface to 400hPa) for clear skies is significantly lower than for
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cloudy skies. The underestimateis about.10 to 15_. in tropical regionsand can be

larger in midlatitude zones.An explanation for MET-UTH products providing values

smaller than the two TOVS datasets(by a slopeof 1.'2_3comparedwith BJ-UTH and

by,1.7comparedto 31-UTH) canbe basedon cloud effects. Indeed,in 1989,the }',lET

operationalproduct wasderivedonly for.areasof 32x32 pixels, freeof cloud at pressure

level below700hPa. In this way,eventhe clear radiancesfor suchareaswerenot used

to derive UTH. Obviously,this makesthe product a lot drier sincewe avoid cloud free

areasin the proximity of cloudsand reducesalso the dynamic rangeof MET-UTH

product. A later change(after 1989)in the MET-UTH products include clear radiances

fi'om partly cloudy regionsand led to a large increasein the dynamic rangeas shown

in the following comparison.Figure 5 of van de Berg el al. [1991], before the change

compared to Figure 5 of Schmetz et al. [1995], after the change exhibit a 20c2_ absolute

difference in the convective zone. So an absolute bias of 20_, in moist regions can be

explained by not including clear radiances from partly, cloudy regions in MET method.

Another solution to decrease the bias found in the present study between

NOAA-TOVS and MET UTH is to add van de Berg et al. [1995] calibration, which

could decrease the radiances by, a 8% relative bias and so increase MET-UTH by, a 20%

relative bias.

MET-UTH algorithm has been improved with years. And so, from 1982 to

now, UTH products are not homogeneous. An update of all UTH product with

the latest algorithm is planned at. the EUropean organisation for the exploitation of

METeorological SATellites (EUMETSAT).
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5. Conclusion

In the present study, three upper tropospheric humidity (UTH) datasets retrieved

from satellite measurements have been compared. The analyses are deceptively simple

since the retrievals characteristics depend on the satellite radiances calibration, the

retrieval algorithms, and all additional assumptions, particularly regarding the constancy

of the vertical profiles of temperature and humidity.

The comparison of each dataset to the mean of the three gives an absolute bias of

20% in convective zone and of 7% in arid zones. Such a bias is significant (relative bias

of 30(,_) compared to the uncertainty given on the UTH retrievals (estimated relative

uncertainties of 10-20_). Different explanations for the discrepancies were investigated.

We note the difference between the UTH quantity and the relative humidity in the

300-500hPa layer. By definition, UTH is related to the 6.7pm brightness temperature

interpreted in terms of the relative humidity in a broad layer (about 200-500hPa), but.

the precise limits of the layer represented vary depending on the air temperature, the

specific humidity profile and the view angle of the satellite as we have shown. ]n other

words, there is a systematic shift in the layer altitude with humidity. In contrast, the 3I

method retrieves the relative humidity in a fixed layer, 300-500hPa, which is not exactly

what. is called UTH. The difficulty to compute UTH from precipitable water vapor

content has been underlined and is mainly due to the transformation sensitivity to air

temperature. The absence of using MET radiances in partly cloudy areas can also make

an absolute difference between NOAA-TOVS and MET UTH retrievals up to 20%.
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The three methods describedin section2 also useancillary data to validate the

modelandto follow evolution of the sensorthroughout its life time. Given the inaccuracy

of the radiosondeobservationsof humidity in the upper troposphere[Elliott and Gaffen,

1991; Soder_ aT_d Larzza_te, 1996], reliance on them may introduce problems. Several

studies [Eyre, 1987; Reuter et al., 1988] also illustrate the impacts that ancillary data,

like radiosonde observations, can have on the final retrievals. _Ilie errors introduced in

this way in the three methods are hard to quantify. The MET method also requires a

calibration of the radiances, not performed aboard the satellite.

On the other hand, the spatial and temporal correlation between the three methods

is excellent, around 0.9 for the spatial correlation and 0.8 for the time-space correlation.

3I-UTH shows larger variability than the two other datasets; the lower variability of

MET-UTH and BJ-UTH can come from the variation of the weighting function peak

altitude with the upper troposphere humidity (section 4.1).

The presenl comparison gives an assessement of the uncertainty of relative humidity

in the upper troposphere retrieved by satellite. An important relative bias of 30%

exisls among the datasets which is largely explained by measurement differences. A

high correlation (larger than 0.8) both in space and time gives confidence in the UTH

variability results. This study also underlines the importance of the details of each

method for computing UTH. For this reason, additional work is needed to understand

the relative merits of each method and the use of a consensus algorithm should be

considered.
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FIGURE CAPTIONS:

Figure 1. Scatter plots in the tropical regions (30°N-30°S)of METEOSAT view for

January,,April, July and October (4 months on the sameplot.), a: 3I versusBJ; b: 3I

versusMET and c: BJ versusMET. In the legend, c standsfor correlation and std for

standard deviation.

Figure 2. SameasFigure 1 in the midlatitude regions(a0-60°N and 30-60°S).

Figure 3. UTH difference (in _) between the datasets (a- 3I; b- BJ; c-MET) and the

mean of the three in July. For clarity, note that light gray _s between +21 and +7%; gray

is between +7 and -7_, and black between -7 and 21%. d: Average of the three datasets

in July 1989 (in c70).

Figure 4. Monthly differences of UTH zonal mean (average on ever3." 5 ° of longitude

over the \Vest part (left.) and the East. part. (right) of the METEOSAT view). January-

July difference is represented in a and b; April-October difference in c and d. Negative

latitude are for southern hemisphere. The standard deviation to the zonal mean (error

bar) are shown for 31 only. -31 (full line); BJ-(dotted line) and -MET (dashed dashed).

Figure 5. Position of the four selected regions [15 ° latitude x 15 ° longitude]. A is

centered with a cross; B with a star; C with a diarnond and D with a triangle.

Figure 6. 5-day-average anomalies time series plotted for the four selected regions of

Figure 5. -3I (full line);-BJ (dotted line);-MET (dashed line).

Figure 7. Taylor diagram: Space-Time variance of UTH in four regions and the global

METEOSAT view by BJ and 3I with MET as reference. The radial coordinate gives the

magnitude of total variance normalized to the reference dataset, and the polar coordinate

gives the correlation with the reference dataset.
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Figure 8. Water vapor channel's weighting function of four satellites (MET-3; MET-

4; NOAA-10 and NOAA-11) for 2 profiles: on the left, an humid profile (300-500hPa

humidity of 100%, 300-500hPa water vapor content of 1.26cm, air temperature between

246 and 270°K) and on the right, a dry profile (300-500hPa humidity of 1_,, 300-500hPa

water vapor content of 0.0064cm, air temperalure between 235 and 263°K). In the legend,

corresponding brightness t_emperatures follow the name of the satellite.
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Table 1. Correlation and StandardDevia-

tion (in %, in Parenthesis)for the 4 Months

of each Scatter Plot of Figure 1 in the 30°S -

30°N band of the METEOSAT View. Each

Column represents a two datasets compari-

son (2600 Values).

Months 3I/BJ 3I/MET B J/MET

January 0.97(4.8) 0.93(7.5) 0.92(6.4)

April 0.98(3.9) 0.94(6.6) 0.94(5.1)

July 0.97(4.7) 0.97(4.8) 0.97(3.3)

October 0.97(4.7) 0.97(5.2) 0.96(4.3)

Table 2. Same as Table 1 in the 30-60°N

and S band, corresponding to Figure 2 (900

Values).

Months 3I/BJ 3I/MET B J/MET

January 0.95(4.6) 0.98(3.0) 0.96(4.4)

April 0.98(3.2) 0.98(3.4) 0.98(3.1)

July 0.95(4.4) 0.99(2.2) 0.95(4.9)

October 0.99(2.4) 0.99(2.8) 0.98(3.3)
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Table 8. Correlation and Rms (in %, in

Parenthesis) in the 4 Different. Regions Shown

on Figure 5. The Correlation and Rms are

Calculated with 5-Day Averaged Time Se-

ries (Plotted on Figure 6) over the Follow-

ing Months: January, April, July and October

1989. Each Column Represents a two Datasets

Comparison (20 Values).

regions 3I/BJ 31/MET B J/MET

a 0.96(6.0) 0.93(9.7) 0.96(5.0)

B 0.95(15.6) 0.96(23.6) 0.96(9.1)

C 0.90(6.8) 0.90(15.7) 0.87 (9.6)

D 0.76(5.9) 0.62(17.7) 0.78(16.8)



Table 4. Absolule Rms and Bias (UTH_-

UTHd) for four Months of 1989. UTH._

Stands for 3] Relative Humidity Computed

with Water \:apor Content and Air Temper-

ature Monthly Means and UTHd for 3I Rel-

ative Humidity Computed with Daily Values

and Monthly Averaged Afterward. The Re-

gion is only the Meteosat View.

Monlhs January April July October

Rms 4.0 5.5 4.3 4.7

Bias -3.2 -4.7 -2.8 -3.7

30



o b

100 ' ' ' " ...... lOO_L ' r" .....'". .....80 ,.,,.... ... 80

60 60

40 '"."_ ._ 40

_- F - " std= 4.75466 1

0 ................... 0

0 20 40 60 80 100 0 20 40 60 80 100

u-rH-BJ (i_ %) urH-ME*r (ir_%)

C

1 O0 ....... " "

?. 80
•c_ 60 . ," .... ,_:..-_<';,,'_",:,.-! : .

CO
I 4-0 - !/_' ' "

", 2,_]_'_" • • "/ "
:I

I.-- _j std= 5.21797

20 .F._ slope= _.22901

0 2o 4o 60 80 _oo
UTH-MET (in %)

Figure 1" Scatter plots in the tropical regions (30°N-30°S) of METEOSAT view for January,

April, July and October (4 months on the same plot), a: 3I versus B J; b: 31 versus MET and

c: BJ versus MET. In the legend, c stands for correlation and st d for standard deviation.
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c d

Figure 3: UTH difference (in %) between the datasets (a- 3I; b- B J; c-MET) and the mean of

the three in July. For clarity, note that light gray is between +21 and +7%; gray is between

+7 and -7% and black between -7 and 21%. d: Average of the three datasets in July 1989 (in

%).
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Figure 4: Monthly differences of UTH zonal mean (average on every 5 ° of longitude over the

West part (left,) and the East part (right) of the METEOSAT view). January-July difference is

represented in a and b; April-October difference in c and d. Negative latitude are for southern

hemisphere. The standard deviation to the zonal mean (error bar) are shown for 31 only. -3I
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Figure 5: Position of the four selected regions [15 ° latitude x 15 ° longitude]. A is centered with

a cross; B with a star; C with a diamond and D with a triangle.
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Figure 8: Water vapor channel's weighting function of four satellites (MET-3; MET-4; NOAA-

10 and NOAA-11) for 2 profiles: on the left, an humid profile (300-500hPa humidity of 100%,

300-500hPa water vapor content of 1.26cm, air temperature between 246 and 270°IK) and on the

right, a dry profile (300-500hPa humidity of 1%, 300-500hPa water vapor content, of 0.0064cm,

air temperature between 235 and 263°I_). In the legend, corresponding brightness temperatures

follow the name of the satellite.


